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Using two theoretical models, we estimated the isotropic elastic constants of an 
alumina-mullite ceramic composite. The alumina phase, 20% by volume, consisted of brick- 
shaped particles with a 4:1 aspect ratio embedded in a mullite matrix (mullite= 
3AI203'2SIO j .  We took alumina elastic-constant values from the literature, and we measured 
multite's elastic constants using a megahertz-frequency pulse-echo method. The two 
theoretical models, Datta-Ledbetter and Mori-Tanaka, proceed from very different viewpoints. 
The Datta-Ledbetter model uses the long-wavelength limit of a scattered plane wave 
ensemble-average approach. The model estimates the speed of a plane harmonic wave, 
averages the scattered field by the Waterman-Truell procedure and uses Lax's quasicrystalline 
approximation to sum over pairs. The Mori-Tanaka method proceeds by estimating the 
average matrix stress in a material containing ellipsoidal inclusions. For randomly oriented 
ellipsoids, it extends Eshelby's solution for a single ellipsoidal inclusion. Both models lack 
adjustable parameters. Surprisingly, the two models with different physical approaches give 
practically identical results. A rough check on our estimates is that they lead to correct 
predictions of the elastic constants of an alumina-mullite-particle aluminium-matrix 
composite. 

1. I n t r o d u c t i o n  
Increasingly, new materials use small particles or 
fibres to achieve desired properties. Depending on the 
physical property, small dimensions present severe 
measurement problems. For  example, for elastic con- 
stants, which are essential both for understanding and 
engineering a material, specimens below a few milli- 
metres in size present severe difficulties for measure- 
ments by usual methods. 

The present study focuses on small ( <  100 gin) 
ceramic composite spheres. Figs 1 and 2 show their 
microstructure. The spheres consist approximately of 
20 vol% alumina (A1203) embedded in a mullite 
(3A1203.2SiOz) matrix. The alumina particles show 
a brick-type shape with an aspect ratio c/a estimated 
as 4:1. 

Directly or indirectly measuring these particles' 
elastic constants presents a formidable problem; hence 
we adopted another approach: quantitative model- 
ling. From the constituents' elastic constants, volume 
fractions and phase geometry, we calculated the 
macroscopic composite elastic constants. 

We used two models: Dat ta-Ledbet ter  and Mor i -  
Tanaka. Both models are described qualitatively in the 
abstract and in more detail below. 

Because the reported mullite elastic constants 
are suspect, we measured a high-quality specimen 
using a megahertz-frequency pulse-echo superposition 
method that gives typical uncertainties of 1 in 1000. 
For alumina, we took reported monocrystal values 
and averaged them to effective polycrystal values by a 
Voigt-Reuss-Hill  method. 

Thus, the principal challenge of this study was to 
model the elastic constants of a ceramic-ceramic com- 
posite comprising 20% by volume of alumina short 
rods embedded in a mullite matrix. 

2. Experimental procedure 
Full details of the mullite elastic-constant measure- 
ments, including their remarkable temperature de- 
pendence, will appear elsewhere [1]. Briefly, we appli- 
ed a pulse-echo superposition method, using 9 MHz 
x-cut and ac-cut transducers bonded with phenyl 
salicylate. We reflected ultrasonic waves from the flat 
and parallel surfaces of a polycrystalline specimen 
hot-pressed into a 0.8 cm x 1.8 cm x 3.0 cm rectangu- 
lar parallelepiped. The macroscopic and X-ray diffrac- 
tion mass densities were 3.156 and 3.168 gcm -3, re- 
spectively. Table I shows the measured elastic con- 
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2. Design: a rational approach to improve material 
properties to meet special needs. 

3. A diagnostic tool. For example, for determining 
the volume fraction of a particle phase by measuring a 
macroscopic physical property. 

4. Used inversely, to determine a particle's physical 
properties. For example: the elastic properties of par- 
ticles formed in situ, particles not available separately 
for study, or particles too small for practical study. 

Figure 1 Typical alumina-mullite microsphere imaged by scanning 
electron microscopy. 

Figure 2 Several microspheres showing alumina phase (lighter) in 
mullite matrix (darker). Obtained by scanning electron microscopy. 
Bright white areas represent electrical-charge artefacts. 

TABLE I Properties of constituents and composite calculation 
results 

m-Alumina Mullite Composite 

D-L model M-T model 

9(g cm-3) 3.986 3.168 3.332 3.332 
B(GPa) 252.0 173.9 186.9 186.9 
E(GPa) 402.9 229.1 256.4 256.3 
G(GPa) 163.3 89.5 100.8 100.8 
v 0.234 0.280 0.271 0.271 

/ 

stants. The table shows also alumina's effective poly- 
crystalline constants obtained from Tefft's [2] mono- 
crystal measurements and a Voigt-Reuss-Hill  arith- 
metic average [3]. 

3. R e s u l t s  
Mathematical models of macroscopic-microscopic 
physical properties offer at least four principal uses: 

1. Prediction of a mixture's macroscopic properties. 
Thus, one can predict a mixture's macroscopic re- 
sponse to field tensors such as stress and temperature. 
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3.1. The  D a t t a - L e d b e t t e r  mode l  
We used a scattered plane wave ensemble-average 
theory to estimate the elastic constants. Here we 
describe briefly the theory, which we discussed else- 
where in detail [-4, 5] (the first reference is a full 
version, the second a simpler short version). First, we 
assume that the composite contains a random homo- 
geneous distribution of ellipsoidal alumina particles in 
a homogeneous, isotropic mullite matrix. Second, we 
assume an incident plane wave with wavelength large 
compared with particle size. One expects the scattered 
wave to transmit through the material as a coherent 
plane wave with an effective wave speed v independent 
of propagation direction. The appropriate effective 
elastic stiffness is then C = pv  2, where p denotes mass 
density. 

Ledbetter and Datta [4-1 showed that the wave 
speed follows from the governing dispersion relation- 
ship. This relationship was derived from a multiple- 
scattering formalism that makes two principal ap- 
proximations: 

1. A well-stirred distribution. With the first particle 
at R 1, the conditional probability density of a second 
particle at R 2 is 

9(R2]R1) = l/V, IR a - RI] >~ 2a 

= 0, ]R 2 - R l l < a  (1) 

Here, a denotes particle radius and V denotes volume. 
2. The Lax quasicrystalline approximation 

(u~)~i = ( u j ) i  (2) 

Here, (u j);  represents the expectation value of the 
field quantity uj keeping the jth particle fixed, and 
(uj)jl  is the conditional expectation relative to the j th  
and ith particles. 

A third, implicit, assumption is that an effective coher- 
ent plane wave moves through the composite medium 
with a characteristic wave speed, the effective wave 
speed. 

The first approximation is somewhat restrictive and 
one expects its validity only for low particle concen- 
trations. Generalizations to higher concentrations re- 
quire appropriate correlation functions (for a discus- 
sion see Willis [6]). However, for simplicity we invoke 
this approximation for the present study. As described 
below for the present composite, theory matches ob- 
servation closely. Thus, at least here, this simplifying 
approximation is valid, as it was in several previous 
studies involving high particle concentrations [4, 7, 8]. 



3.2. The M o r i - T a n a k a  model  
3.2. 1. Effective modufi of two-phase 

elastic composites 
General expressions for the effective elastic moduli of 
two-phase perfect-bond composites can be derived by 
considering over the composite the volume average of 
the stress eu and strain ~u: 

a = + c2{a2} (3) 

= clg + c2{g2} (4) 

In Equations 3 and 4 an overbar denotes the volume 
average of a quantity, braces { } denote the orienta- 
tional average of an orientation- dependent quantity, 
and the well-known shorthand notation has been used 
for tensor quantities. Subscripts 1 and 2 denote the 
matrix and reinforcing phases, respectively, and q 
denotes the volume fraction of the ith phase, with 
cl + c 2 = 1. In each phase, s and r relate through 
Hooke's law: ~ = C~.  Consider that the two-phase 
composite is subjected to homogeneous displacement 
boundary conditions s~ u~ = s ~  where S denotes 
the composite's surface. By homogeneous boundary 
conditions we mean that when they are applied to a 
homogeneous solid they result in homogeneous stress 
and strain fields. The volume-averaged stress and 
strain relate through effective elastic stiffnesses C: 

a = C~ (5) 

Noting that the perturbation of the strain field van- 
ishes when integrated over the domain of the entire 
composite, ~ can be expressed as 

= ct~ , + c2{~2} = a ~ (6) 

Equation 4 is a statement of the average strain 
theorem of elasticity for heterogeneous materials. 
Equations 3-6 can be combined to yield 

C = C~ + c2{(C2 - G)A} (7) 

In Equation 7, A denotes the strain-concentration 
factor (fourth-order tensor) that  relates the average 
strain in the reinforcing phase to that in the composite: 

~2 = Ag = AI; ~ (8) 

In general, A depends on orientation. Thus, estimating 
A is the key to predicting the effective elastic stiffnesses 
C. In general, A cannot be obtained exactly and must 
be estimated by some approximate method. 

3.2.2. Estimates of the strain-concentration 
factor A 

The simplest approximations of A and B are 
A = I and B = / ,  which are the Voigt [9] and Reuss 
[10] approximations, respectively. (Here B denotes 
the stress-concentration factor, an alternative way to 
solve the problem.) The next simplest estimate is the 
dilute approximation where the interaction among the 
reinforcing particles in a matrix-based composite is 
ignored. The concentration factor A is obtained from 
the solution of the auxiliary problem of a single 
particle embedded in an infinite matrix. For an ellip- 
soidal particle, Eshelby's [11] solution is most con- 

venient and leads to the concentration factor for an 
isolated single inclusion, Adil: 

A d" = [ I +  S C ~ 1 ( C 2 - C 1 ) ]  -1 (9) 

Here I denotes the fourth-order identity tensor and S 
Eshelby's tensor (fourth order), which is a function 
only of the shape of the inclusion and the elastic 
constants of the matrix (Poisson's ratio for an iso- 
tropic matrix). Explicit expressions for S for many 
ellipsoidal shapes were tabulated by Mura [12]. Sub- 
stitution of Equation 9 into Equation 7 yields an 
explicit expression for the effective elastic constants of 
the composite, an expression valid for dilute reinforce- 
ment concentrations. 

One of the easiest methods available for considering 
interactions among reinforcing particles at higher con- 
centrations is the Mori-Tanaka [13] mean-field 
theory. The original study of Mori and Tanaka fo- 
cused on estimating the average internal stress in a 
matrix material containing precipitates with eigen- 
strains (transformation strains). Since then, the 
method has been applied successfully to many prob- 
lems in the mechanics and physics of composite mater- 
ials. Initially the method was linked with Eshelby's 
E11] equivalent-inclusion method as used by Takao et 
al. [14]; a review of many applications in this context 
was given by Taya and Arsenault [15]. Recently, 
Benveniste [16] reexamined the underlying assump- 
tions of the method and reformulated it in a direct 
approach. The method has also received considerable 
attention from a theoretical standpoint (e.g. Chen et al 
[ 17] and references therein) and has been shown to be 
on strong theoretical footing for the elastic behaviour 
of two-phase composite media. In fact, for a two-phase 
elastic composite containing ellipsoidal inclusions, the 
Mori-Tanaka effective moduli coincide with Willis's 
[18] bounds (Weng [19]), which are an extension of 
the Hashin-Shtrikman bounds to include information 
on inclusion shape. 

The key assumption in the Mori-Tanaka [13] 
theory is that the concentration factor A is given by 
the solution for a single particle embedded in an 
infinite matrix subjected to boundary conditions com- 
patible with a strain field equal to the as-yet-unknown 
average strain in the matrix: 

~2 = Adi181 (10) 

Here A is given by Equation 9. 
With Equations 6, 8 and 10, the concentration 

factor A MT can be written 

A MT = A d i l [ c l l +  c2{Adil}] -1 (11) 

Equation 11 was first obtained by Benveniste [16]. 
Equations 7 and 11 provide an explicit expression for 
the composite's effective elastic moduli: 

C = C 1 + c2{(C z - C l ) A a i ~ } [ c l l  + c2{Aai~}] -~ 

(12) 

Here again, A d~l is given by Equation 9 and is a 
function of C1, C2 and S. Equation 12 is an explicit 
equation for the effective elastic moduli; no iterative or 
other numerical schemes are required for its solution. 
A catalogue of simplified expressions for many ex- 
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treme microstructural geometries was given by Chen 
et al. [17]. For composites with perfectly aligned 
reinforcements, the orientational averages in Equation 
12 can be removed. 

4. Discuss ion 
The model-calculation results shown in Table I show 
several interesting features. First, although the two 
theoretical models approach the problem from very 
different viewpoints, and the material lies well beyond 
the dilute limit, the results are practically identical. 
This agreement confirms at least the calculations' 
mathematical correctness. Furthermore, it suggests 
the calculations' physical correctness. Second, all the 
calculated elastic properties lie between the bounds of 
the softer matrix and the stiffer particle. Third, all the 
calculated elastic stiffnesses (B, E, G)-lie well below a 
linear rule of mixtures and along a stiffness- 
concentration curve with positive curvature. Fourth, 
the Poisson's ratio lies slightly above a linear rule-of- 
mixture value, and thus along a curve with small 
negative curvature. (The mass density should follow 
exactly a linear rule of mixture. Thus we predict that 
the particle mass density equals 3.332 g cm-3.) 

The particle aspect ratio (c/a = 4) produces little 
effect on the elastic constants. For example, for 
spheres (c/a = 1) the shear modulus equals 100.74 
instead of 100.82 GPa. For prolate ellipsoid (rod-sha- 
pe) particles, significant stiffening occurs only for 
much higher aspect ratios (see Datta and Ledbetter 
[20], especially Figs 5 and 6). 

To test our results' veracity, we used them as input 
information to estimate the effective elastic constants 
of an alumina-mullite particle-reinforced aluminium- 
matrix composite. Using both resonance (kilohertz) 
and pulse-echo (megahertz) methods, we measured the 
Young's moduli of composites with seven volume 
fractions. (Full results of this study will appear else- 
where [21].) For a composite with 0.24 volume frac- 
tion of alumina-mullite particles we found E = 96.1, 
94.6 and 93.3 GPa for the resonance, pulse-echo and 
calculation results, respectively. Other composites be- 
haved comparably. Thus, this measurement-model- 
ling agreement within 2% supports our calculated 
alumina-mullite elastic properties. 

5. Conclusions 
From this study we reached four conclusions: 

1. We can calculate the effective quasi-isotropic 
elastic constants of a ceramic-ceramic composite 
where the occluded phase consists of short rods ap- 

proximated as ellipsoids with c/a = 4. The particular 
example is s-alumina particles in a mullite matrix. 

2. We found good agreement between two models: 
Datta-Ledbetter and Mori-Tanaka. The first is a 
long-wavelength-limit scattered plane wave ensemble- 
average approach. The second focuses on "average 
stress" in the matrix and Eshelby's solution of an 
ellipsoidal inclusion. 

3. All the usual elastic stiffnesses-bulk, Young's 
and shear moduli-depart strongly negatively from a 
linear rule of mixtures. 

4. Our estimates receive confirmation from the 
good agreement between, measured and modelled 
Young's moduli of alumina-mullite particle-rein- 
forced aluminium-matrix composites. 
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